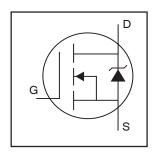
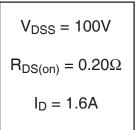
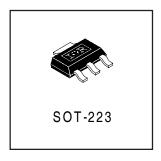
International Rectifier


HEXFET® Power MOSFET


- Surface Mount
- Dynamic dv/dt Rating
- Fast Switching
- Ease of Paralleling
- Advanced Process Technology
- Ultra Low On-Resistance
- Lead-Free

Description


Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SOT-223 package is designed for surface-mount using vapor phase, infra red, or wave soldering techniques. Its unique package design allows for easy automatic pickand-place as with other SOT or SOIC packages but has the added advantage of improved thermal performance due to an enlarged tab for heatsinking. Power dissipation of 1.0W is possible in a typical surface mount application.

IRFL4310PbF

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V**	2.2	
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V*	1.6	Α .
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V*	nt, V _{GS} @ 10V* 1.3	
I _{DM}	Pulsed Drain Current ①	13	•
P _D @T _A = 25°C	Power Dissipation (PCB Mount)**	2.1	W
P _D @T _A = 25°C	Power Dissipation (PCB Mount)*	1.0	W
	Linear Derating Factor (PCB Mount)*	8.3	mW/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy ^②	47	mJ
I _{AR}	Avalanche Current①	1.6	Α
E _{AR}	Repetitive Avalanche Energy①*	0.10	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T_{J}, T_{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Amb. (PCB Mount, steady state)*	93	120	°C/W
$R_{\theta JA}$	Junction-to-Amb. (PCB Mount, steady state)**	48	60	

^{*} When mounted on FR-4 board using minimum recommended footprint.

^{**} When mounted on 1 inch square copper board, for comparison with other SMD devices.

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.12		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.20	Ω	$V_{GS} = 10V, I_D = 1.6A \oplus$
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
g _{fs}	Forward Transconductance	1.5			S	$V_{DS} = 50V, I_D = 0.80 A$
I	Drain-to-Source Leakage Current			25		$V_{DS} = 100V, V_{GS} = 0V$
I _{DSS}	Diam-to-Source Leakage Current			250	μA	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
1	Gate-to-Source Forward Leakage			100		V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
Q_g	Total Gate Charge		17	25		$I_D = 1.6A$
Q_{gs}	Gate-to-Source Charge		2.1	3.1	nC	$V_{DS} = 80V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		7.8	12		V_{GS} = 10V, See Fig. 6 and 13 \oplus
t _{d(on)}	Turn-On Delay Time		7.8			$V_{DD} = 50V$
t _r	RiseTime		18		ns	$I_D = 1.6A$
t _{d(off)}	Turn-Off Delay Time		34		115	$R_G = 6.2 \Omega$
t _f	Fall Time		20			$R_D = 31 \Omega$, See Fig. 10 ④
C _{iss}	Input Capacitance		330			$V_{GS} = 0V$
C _{oss}	Output Capacitance		92		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		54			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			0.04		MOSFET symbol P
	(Body Diode)			0.91		showing the
I _{SM}	Pulsed Source Current	13		_ A	integral reverse G	
	(Body Diode) ①			13		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 1.6A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		72	110	ns	$T_J = 25^{\circ}C$, $I_F = 1.6A$
Q _{rr}	Reverse RecoveryCharge		210	320	nC	di/dt = 100A/μs ④

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $@V_{DD}$ = 25V, starting T_J = 25°C, L = 9.2 mH R_G = 25 Ω , I_{AS} = 3.2A. (See Figure 12)
- 4 Pulse width \leq 300 μ s; duty cycle \leq 2%.

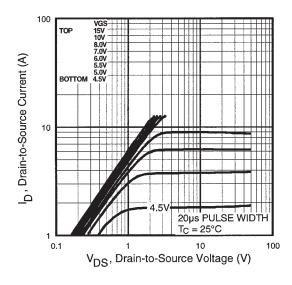


Fig 1. Typical Output Characteristics,

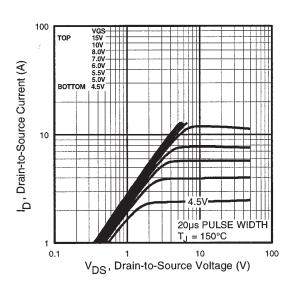
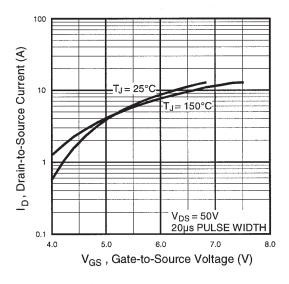
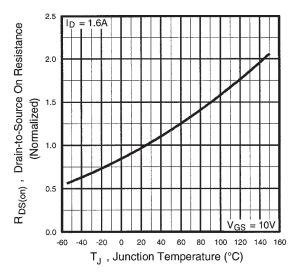
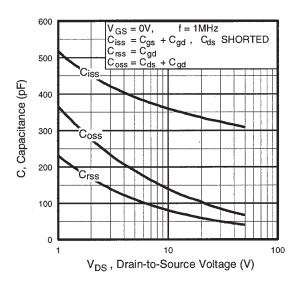
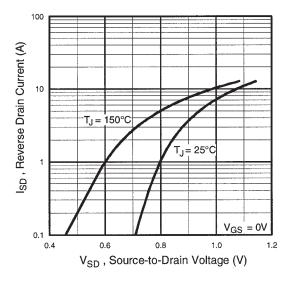


Fig 2. Typical Output Characteristics,


Fig 3. Typical Transfer Characteristics

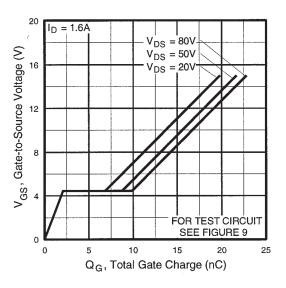

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

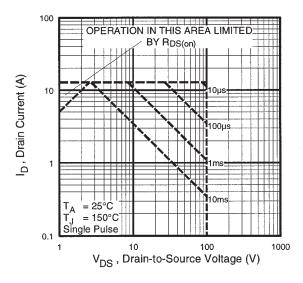


Fig 8. Maximum Safe Operating Area

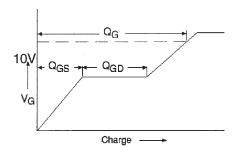


Fig 9a. Basic Gate Charge Waveform

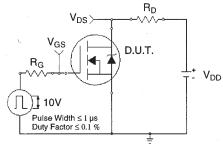


Fig 10a. Switching Time Test Circuit

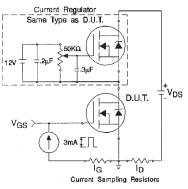


Fig 9b. Gate Charge Test Circuit

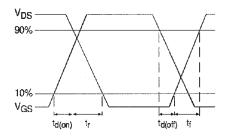


Fig 10b. Switching Time Waveforms

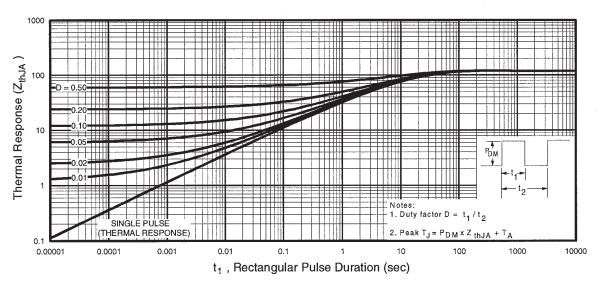


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

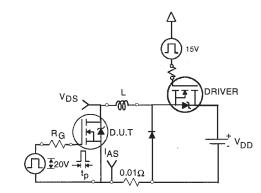


Fig 12a. Unclamped Inductive Test Circuit

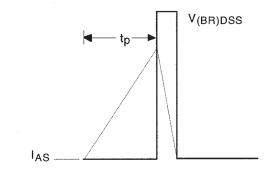
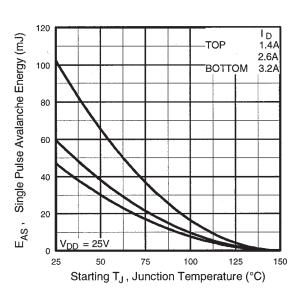
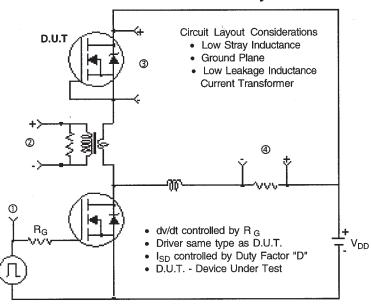




Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Peak Diode Recovery dv/dt Test Circuit

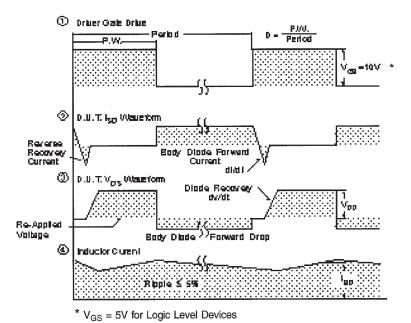
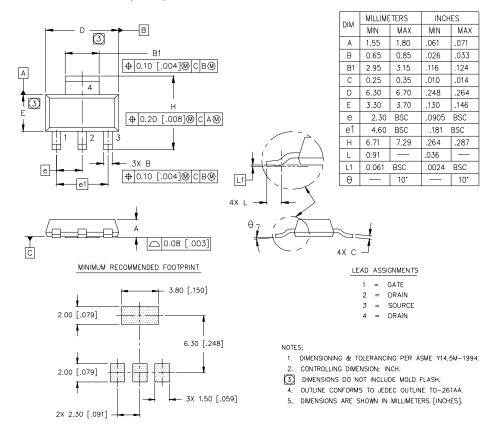
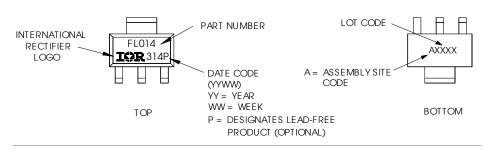
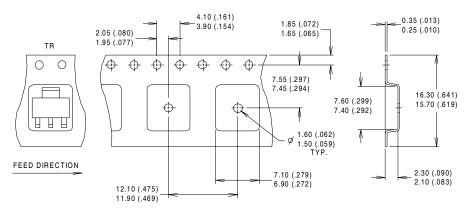



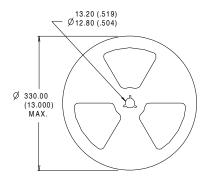
Fig 13. For N-Channel HEXFETS

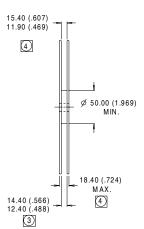
SOT-223 (TO-261AA) Package Outline


Dimensions are shown in milimeters (inches)


SOT-223 (TO-261AA) Part Marking Information

HEXFET PRODUCT MARKING


EXAMPLE: THIS IS AN IRFL014



SOT-223 (TO-261AA) Tape & Reel Information

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- 3. EACH Ø330.00 (13.00) REEL CONTAINS 2,500 DEVICES.

NOTES:

- OUTLINE COMFORMS TO EIA-418-1. CONTROLLING DIMENSION: MILLIMETER..
- DIMENSION MEASURED @ HUB.
 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 04/04

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.